Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mesoporous Graphitic Carbon Nitrides Supported Noble Metal Nanoparticles for Green Catalysis under Visible Light

Objective

"The present synthetic methodologies in chemical industry must be significantly improved to enable producing many chemicals by employing environmental-friendly and sustainable procedures. One of the main challenges for establishing a sustainable society is to mimic natural photosynthesis and develop stable and efficient photocatalysts for various chemical transformations under visible light irradiation that is almost never depleted out.

Chemically stable graphitic carbon nitride (g-C3N4) is an easily available organo-catalyst featuring a semiconductor band gap of 2.7 eV corresponding to an optical wavelength of 460 nm. Density functional theory (DFT) calculations suggest that the visible-light-response of g-C3N4 photocatalyst originates from an electron transition from the valence band populated by N2p orbital to the conduction band formed by C2p orbital.

In this project, novel photocatalysts based on mesoporous polymeric graphic carbon nitrides (mpg-C3N4) supported Au, Pd or Au-Pd nanoparticles (M@mpg-C3N4; M = Au, Pd, or Au-Pd) will be developed by a co-impregnation or sol-gel method. The catalytic performance of the as-prepared M@mpg-C3N4 catalyst under visible light irradiation will also be investigated. In the synthesis of hydrogen peroxide from water and oxygen catalyzed by M@mpg-C3N4, the reaction is initiated by electron (e-) and hole (h+) pairs generated by the visible-light-irradiation on mpg-C3N4. The photo-generated electron reduces molecular oxygen which directly reacts with water to produce hydrogen peroxide on the surface of noble metal nanoparticles. For the oxidation of alcohols in water, alcohols will be oxidized by hydrogen peroxide in-situ generated from water and oxygen in the presence of M@mpg-C3N4 under visible light. Moreover, oxygen activated by mpg-C3N4 under visible light will directly oxidize the primary carbon-hydrogen bonds in toluene by noble metal nanoparticles in M@mpg-C3N4 to efficiently produce benzyl alcohol, benzaldehyde, etc."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

CARDIFF UNIVERSITY
EU contribution
€ 209 033,40
Address
RESEARCH SERVICES C/O MAIN BUILDING
CF10 3AT CARDIFF
United Kingdom

See on map

Region
Wales East Wales Cardiff and Vale of Glamorgan
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0