Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

An Efficient Optical Interface between Quantum Dots and Ultracold Atoms

Objective

"Quantum information science is a new branch of physics that promises to develop information technologies and measurement systems beyond the limits of classical physics. Physical implementations of quantum information schemes vary widely and include systems as disparate as superconducting circuits and trapped ions. While significant progress has been made in each platform, each has its own advantages and disadvantages. A new paradigm is emerging which aims to combine disparate systems to take advantage of each system's strengths while mitigating their weaknesses. An example of a hybrid quantum system could use single photons to efficiently transfer information and stationary systems (quantum memories) like atoms to store and manipulate it. Independently, semiconductor quantum dots have emerged as near-ideal sources of single photons while dense gases of neutral atoms have emerged as a leading candidate for quantum memories. As of yet, these leading technologies have not been integrated, a necessary step towards the development of a distributed quantum network. Here, we propose to develop an efficient atomic quantum memory specifically designed for use with a quantum dot single photon source. The experienced researcher, Matthew Rakher, has extensive experience developing quantum dot single photon sources as a graduate student and postdoc in the United States. The project manager, Philipp Treutlein, has many years of experience with ultracold atomic systems and in particular, the integration of atomic systems with solid-state systems. The inability to integrate quantum dots and neutral atoms to date is due to the fact that each system requires experimental expertise and a substantial knowledge base that do not strongly overlap. Given the unique combination of expertise described here, we believe that our proposal will yield significant results expediently and certainly meets the criteria and spirit of the Marie Curie Incoming International Fellowship program"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

UNIVERSITAT BASEL
EU contribution
€ 192 622,20
Address
PETERSPLATZ 1
4051 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0