Objective
Current effort in the engineering of synthetic extracellular matrixes has focused on installing molecular features (peptides, proteins and bio-interactive polymers) within insoluble scaffolds, either by self-assembly or through covalent modifications of polymer or biopolymer networks. Apart from their direct role in cell interaction, bioactive molecules or peptide sequences affect the hierarchical structural organization and mechanical properties of the resulting material, thus indirectly affecting the cellular response. The overall aim of the proposed research is to develop a fundamental understanding of the structure-mechanical properties-function relations of multicomponent polysaccharide hydrogels used in tissue engineering applications and to apply this understanding in the development of engineering principles that can serve as a generic guide for the design of polysaccharide-based materials for biological applications. Three specific aims will be addressed: 1) Characterization of the interrelations between the chemical compositions of the building blocks (both polymers and peptides) and the resulting structure of the bioactive gels; 2) Systematic investigation of the effect of the different structures on the physical properties of the hydrogel constructs; and 3) Evaluation of the cellular response of the synthesized hydrogels. A methodical study correlating the effect of the bioactive molecules on the resulting hierarchical structure (explored by small angle scattering) and consequent properties will be performed to elucidate the synergetic interactions among the components that determine scaffold effectiveness. A systematic exploration of the polysaccharide type, method of peptide incorporation and gelling parameters will reveal the key factors involved in structure-function relations of the synthetic ECMs. These factors will be employed to create general guidelines for the design of multi-component polysaccharide hydrogels for desired applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences medical biotechnology tissue engineering
- natural sciences chemical sciences polymer sciences
- natural sciences biological sciences biochemistry biomolecules carbohydrates
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
84105 Beer Sheva
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.