Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Molecular and cellular imaging of membrane interactions in pathogen attack and immune defense

Objective

"The immune system and pathogens both use membrane pore-forming proteins to penetrate cellular membranes, in order to kill target cells or to allow passage of pathogenic organisms such as malaria parasites, listeria, or toxoplasma. For both fundamental and practical reasons, it is important to understand the biological actions of the ""arms race"" underlying virulence, pathogenesis and immune defense. The key weapon in this membrane attack is a class of proteins that upon activation undergo a dramatic conversion from water-soluble monomers to a large, membrane-inserted assembly. Both the human immune response and microbial pathogenesis rely on membrane disruption by perforin-like proteins for attack and counterattack. This protein superfamily encompasses perforin and complement pore-forming assemblies in the immune system, as well as the more distantly related bacterial cholesterol-dependent cytolysins. With recent advances in electron cryo-microscopy, tomography and correlative fluorescence microscopy, it is now possible to relate the workings of protein machines in model systems such as liposomes to their actions in the cellular context. I wish to capitalize on these technical advances and visualize membrane interactions at the moment the intracellular pathogen Toxoplasma gondii bursts out of its host cell, as well as the delivery of lethal cargo from the cytotoxic lymphocyte to its target cell through the immune synapse. These studies will correlate 3D spatial information at cellular and molecular levels to reveal the operation of dynamic cellular machinery. I have chosen a well-ordered system that can bridge the gulf between cell biology and atomic structure. Innovations in sample preparation combined with state-of the art imaging methods will lead to the molecular definition of a fundamental process in “hostile” communication between cells and will broaden the landscape for drug design for immune disorders and major infectious diseases."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110310
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

BIRKBECK COLLEGE - UNIVERSITY OF LONDON
EU contribution
€ 2 311 036,00
Address
MALET STREET
WC1E 7HX London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0