Objective
The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesmicrobiologybacteriology
- medical and health sciencesbasic medicineimmunology
- medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugsvaccines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2011-ADG_20110310
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
08003 Barcelona
Spain