Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Solubility of volatiles in magmas

Objective

Volcanic eruptions may have serious human and economic consequences (e.g. ash clouds, large cities close to active volcanic systems). The eruptive styles and mechanisms are mainly dependent on degassing processes in magmas. The main dissolved gases are H2O and CO2 and understanding the solubility of mixed volatiles, such as H2O and CO2, in silicate melts as well as the partitioning of volatiles between melts and fluids is of particular importance to model magmatic and volcanic processes. The available models recently developed fail in reproducing H2O and CO2 solubilites for a variety of natural compositions, mainly because there is no data to model accurately compositional parameters (e.g. role of alkalis, alkaline Earth, NBO/T).

The first goal of this project is the determination of the role of compositional parameters on the distribution of volatiles, H2O and CO2, between silicate melts and coexisting gas phase at high
pressure and high temperature. Starting from a base composition corresponding to a basalt, parameters such as K2O /(Na2O+ MgO+CaO), CaO /(Na2O+ K2O+ MgO) ratios, and NBO/T will be modified systematically in the investigated melt composition. The H2O and CO2 solubility and partitioning data will be used to improve the existing H2O and CO2 solubility models (e.g. Papale et al. 2006). The results will also have a particular impact for the interpretation of volatile concentration in natural glass inclusions.

In a second part, complementary to the volatile solubility investigations, the kinetics of degassing will be studied in isobaric isothermal experiments as well as in experiments with fixed decompression rates. Particular attention will be given to the nucleation and growth of bubbles. Innovative techniqes (automatic processing of microtomographic data) will be used to analyse the experimental products. The experiments will be designed to model degassing processes during eruptions from the magma chamber to the eruptive column.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
EU contribution
€ 174 475,20
Address
WELFENGARTEN 1
30167 Hannover
Germany

See on map

Region
Niedersachsen Hannover Region Hannover
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0