Objective
In the past three decades, magnetic resonance imaging (MRI) has become a vital tool for clinical diagnosis and research. A major current trend is the introduction of magnets with much more powerful static magnetic fields, including magnets at 7 Tesla (7T) and higher. Advantages of higher magnetic fields include higher signal-to-noise ratios enabling improved spatial and temporal resolution, and new, unique tissue contrasts due to enhanced sensitivity to tissue susceptibility differences.
Unfortunately, the radiofrequency (RF) fields used to excite tissue at higher magnetic fields are subject to interference and penetration effects, leading to signal dropouts which vary from subject to subject depending on body habitus. These effects imply that the inherent advantages of 7T often cannot be leveraged to realise practical imaging benefits. A fair evaluation of the diagnostic potential of 7T cannot be achieved, as image quality improvements are handicapped and often counteracted by these unresolved technical hurdles. 7T MRI cannot be considered for routine clinical use or even effectively evaluated for such use until these hurdles have been overcome.
Preliminary research indicates that these effects can be addressed by use of parallel transmission strategies. The goal of the proposed project is to develop a highly optimized multi-channel transmit/receive RF coil for body MRI at 7T. This coil should then be used to exploit and manipulate the complex RF field patterns at 7T using parallel transmission approaches. In contrast to previous approaches, a hybrid method including both static and dynamic shimming of the RF field will be investigated. We hypothesise that such an approach would greatly enhance the flexibility of RF manipulation while limiting overall system complexity. It can be conjectured based on the known properties of ultra-high-field MRI that success would have ground-breaking impact on the diagnosis and characterisation of manifold disease processes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radio frequency
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-ADG_20110310
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
69120 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.