Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Interaction of Cooper Pairs and Massless Dirac Fermions in Suspended Superconductor-Graphene Devices

Objective

"Superconductivity occurs in a metal when the temperature is low enough to favour the appearance of a new ground state comprised of time-reversed pairs of electrons. These composite particles, called Cooper pairs, form a condensate giving rise to the extraordinary phenomena characteristic of superconductivity, including zero electrical resistivity and perfect diamagnetism. Graphene is a two dimensional crystal of carbon atoms which despite being non-superconducting exhibits another type of emergent electronic order. Due to the high symmetry of graphene’s hexagonal lattice its charge carriers are massless Dirac fermions. Unlike in a normal semiconductor or metal, these electronic quasiparticles act like neutrinos, obeying the laws of ""relativistic"" quantum mechanics with an effective speed of light given by the Fermi velocity.

This project seeks to study the interaction between these two types of remarkable emergent electronic particles, massless Dirac fermions and Cooper pairs. The conversion of Cooper pairs and massless Dirac fermions, the “relativistic” superconducting proximity effect, can occur in several unique graphene-superconductor (GS) junction devices. It is in the ballistic, short and transparent transport regime that new phenomena, peculiar to the ""relativistic"" nature of massless Dirac fermions, are expected. To obtain GS devices in this so far unattained limit, novel fabrication techniques will be employed, including chemical vapour deposition of graphene on superconducting electrodes, stencil-mask evaporation, multiple-angle deposition, and sample suspension. Low-temperature electronic measurements on these devices should then reveal theoretically-predicted effects such as specular Andreev reflection and gate-dependent multiple Andreev reflection, as well as others yet to be discovered relying on the interaction between Cooper pairs and massless Dirac fermions."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 201 932,40
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0