Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development of a bioartificial liver therapy in acute liver failure

Objective

In BALANCE, the companies Hep-Art, Pharmacell and BioPredic join forces with academic partners Amsterdam Medical Centre and University of Edinburgh to offer Acute Liver Failure (ALF) patients a bioartificial liver-support system for bridging the waiting period for liver transplantation or recovery of the diseased liver.
ALF is a highly lethal disorder and liver transplantation is the only life-saving therapy. However, limited availability of donor livers severely reduces its impact. A bioartificial liver (BAL) may support ALF patients by temporary and extracorporeal treatment of their plasma through a bioreactor with functional human liver cells.
The central objective of BALANCE is to develop a HepaRG-BAL that executes the three key liver functions for a clinically relevant period in ALF and to reach proof of safety and feasibility. What makes the HepaRG-BAL extremely potent is the unique combination of an ideal liver cell ecosystem and the introduction of the HepaRG cell line which is the only human cell line in the world that approaches human liver in its functionality.
A two-staged approach will be adopted. Stage I is designed for in-vitro optimisation of the BAL and the human cell line and stage II comprises of the ex-vivo activities in which the optimized and upscaled BAL is tested and validated in pigs (controlled study). In addition approvement of a Phase I/IIa in humans will be prepared. .
BALANCE will give birth to four main results: an optimised and validated BAL, a large scale manufacturing process, proof of concept in a large animal model of ALF and basic information for regulatory approval for future clinical application. Hep-Art will further pursue clinical development of the BAL towards EMA registration and marketing together with a large industrial partner. BioPredic will further exploit the HepaRG cells. Last but not least, BALANCE will strengthen the European competitive advantage in the field of bioartificial organs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2012-INNOVATION-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
EU contribution
€ 1 665 612,60
Address
MEIBERGDREEF 15
1105AZ Amsterdam
Netherlands

See on map

Region
West-Nederland Noord-Holland Groot-Amsterdam
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0