Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Qualitative Theory of finite-time and random dynamical systems

Objective

This research project aims at developing the qualitative theory of nonautonomous (i.e. time-dependent, random or control) systems in new directions beyond the traditional setting which are highly relevant in the applied science, but surprisingly almost unexplored.

The theory of nonautonomous dynamical systems has experienced a renewed and steadily growing interest in the last twenty years, stimulated also by synergetic effects of disciplines which have developed relatively independent for some time such as topological skew product flows, random dynamical systems, finite-time dynamics, and control systems. The importance of nonautonomous dynamical systems is illustrated by the fact that the technological and economical development of our society has generated the need to deal with very complex systems that require an accurate level of understanding. The crisis of the financial markets and weather phenomena associated to climate change such as El Nino, are examples of dynamical processes with a deep economic impact that require sophisticated models to take nonautonomous influences into account.

The main challenge in the study of nonautonomous phenomena is to understand the often very complicated dynamical behaviour both as a scientific and mathematical problem. The central aim of this research project is to develop insights and tools in finite-time and random qualitative theory from a mathematical viewpoint which are relevant and have a potentially high impact on the applied sciences. Building upon my success I had during the graduate years from 2006 to 2009 and postdoc since 2009, the proposal contains the following research directions:

(i) Invariant manifold theory of finite-time dynamical systems,
(ii) Bifurcation theory of finite-time dynamical systems,
(iii) Bifurcation theory of random dynamical systems,
(iv) Normal form theory of random dynamical systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 209 033,40
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0