Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The spatiotemporal organization of T cell signaling as a regulator of T cell function

Objective

Understanding how cellular activation occurs in complex signaling networks is an important challenge in particular in multi-genic diseases such as autoimmune disease, type II diabetes, and cancer. A critical component of signaling complexity is that proteins inside live cells enrich at particular locations and times. Co-enrichment of two proteins enhances their interaction efficiency. At the systems scale, such patterning thus determines how regulatory information flows through signaling networks. We have developed approaches to harness the regulatory information encoded in systems scale spatiotemporal distributions to understand cell function, using live cell time-lapse fluorescence microscopy in imaging of the activation of primary T cells (> 50 signaling intermediates, > 10,000 cell couples). Upon transfer to the University of Bristol, we will further develop these unique approaches and apply them to understand T cell function in health and disease with two objectives.

The first, methodological objective is to further develop quantitative systems scale imaging approaches, including computational image analysis and mathematical modeling, resulting in generally applicable tools for the analysis of complex signaling systems. The second, biological objective is to elucidate how the spatiotemporal organization of T cell signaling regulates lymphocyte function. By causally linking the spatiotemporal organization of signaling to cell function, we will investigate roles of the tyrosine kinases Itk and Tec as established regulators of the spatiotemporal organization of T cell signaling (Singleton et al., Sci. Signal., 2011) in cytokine secretion, primary immunodeficiency, and Leishmania infection, T cell actin regulation by the central costimulatory receptor CD28, signaling in the killing of virally-infected and tumor target cells by cytotoxic T cells and natural killer cells, and SLAM receptors in susceptibility to the autoimmune disease systemic lupus erythematosus.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

UNIVERSITY OF BRISTOL
EU contribution
€ 100 000,00
Address
BEACON HOUSE QUEENS ROAD
BS8 1QU Bristol
United Kingdom

See on map

Region
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bristol, City of
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0