Objective
Motile bacteria are able to colonize surfaces using various types of motility. ‘Bacterial swarming’ is the most rapid method, involving an organized, hyperflagellated-based cell motion and collective secretion of bio-surfactants. During swarming, bacteria exploit hydrodynamic interactions; they move in whirls and jets similarly to flocks of birds and schools of fish. Hundreds of cells migrate on the surface in dynamic clusters and form either a single layer or multiple layers, depending on the strain and growth conditions. Past work, which used particle tracking methods to analyze cell trajectories, showed clear group benefits. However, those studies were largely limited to quasi two-dimensional imprecise assumptions and to extreme sample manipulations, all of which combined to yield unnatural habitats. Consequently, it is not clear how swarming cells migrate in a real three-dimensional colony. Here I will study bacterial swarming in unconstrained natural habitats. The methodology is based on mixing green fluorescent protein (GFP)-labelled motile bacteria with wild type bacteria and tracking their three-dimensional trajectories using a specially designed microscope setup and sophisticated computer programs. This setup will enable me to explore whether the movement of a single cell within a multilayered swarming colony is influenced by its neighbors and to discover whether groups of cells tend to disperse or to build small localized sub-communities if conditions are adverse. Sophisticated data analysis will clarify whether bacteria move only within one layer inside the multilayered swarm or whether they migrate up and down, switching from layer to layer. By performing the experiment with added antibiotics, the results are expected to show how bacteria join and collectively benefit for the survival of the strain.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs antibiotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2012-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
84105 Beer Sheva
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.