Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Study of Novel Low Noise Superconducting Mixers for Terahertz Radio Astronomy

Objective

"Terahertz heterodyne receivers are valuable tools for molecular gas spectroscopy both for space (radioastronomy, planetary science) and terrestrial applications. They provide both high resolution spectral data, as well as broad bandwidth line survey data. Due to the progress in device physics, such receivers can now reach several THz. At such high radio frequencies, neither electronic nor photonic approaches for THz detectors work, but rather a combination of both is required. Superconducting devices have proven to provide sensitivity levels close to the quantum limit, hf/k. Superconducting Hot- Electron Bolometers (HEB) based on ultrathin NbN and NbTiN films are currently the only devices which are used as mixers for frequencies above 1.2THz (SIS mixer limit). However, their speed (i.e. the instantaneous bandwidth) is limited by the finite electron energy relaxation rate, of 40-100 ps. It corresponds to the bandwidth of maximum 4-5GHz. Such applications in radio astronomy as extragalactic spectroscopy, molecular line survey require this bandwidth to be doubled to say at least. In this project we will investigate response rate in ultra thin MgB2 superconducting films. Preliminary investigation measured the electron-phonon interaction time as short as 1ps. Our recent data, point out on the response rate being limited by the phonon dynamic in the thick films. We will develop technology for ultrathin MgB2 film deposition, and processing THz nanobolometers. The response rate will be investigated with regards to the film parameters. In particularly, the phonon diffusion in superconducting nanobolometers will be studied in order to enhance the instantaneous bandwidth of MgB2 mixers. We estimate that the bandwidth of the novel THz detectors will be at least doubled compared to the existing once, providing completely new functionalities for THz radio astronomical receivers."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

CHALMERS TEKNISKA HOGSKOLA AB
EU contribution
€ 1 497 775,00
Address
-
412 96 Goteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0