Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

High-Dimensional Sparse Optimal Control

Objectif

We are addressing the analysis and numerical methods for the tractable simulation and the optimal control of dynamical systems which are modeling the behavior of a large number N of complex interacting agents described by a large amount of parameters (high-dimension). We are facing fundamental challenges:
- Random projections and recovery for high-dimensional dynamical systems: we shall explore how concepts of data compression via Johnson-Lindenstrauss random embeddings onto lower-dimensional spaces can be applied for tractable simulation of complex dynamical interactions. As a fundamental subtask for the recovery of high-dimensional trajectories from low-dimensional simulated ones, we will address the efficient recovery of point clouds defined on embedded manifolds from random projections.
-Mean field equations: for the limit of the number N of agents to infinity, we shall further explore how the concepts of compression can be generalized to work for associated mean field equations.
- Approximating functions in high-dimension: differently from purely physical problems, in the real life the ”social forces” which are ruling the dynamics are actually not known. Hence we will address the problem of automatic learning from collected data the fundamental functions governing the dynamics.
- Homogenization of multibody systems: while the emphasis of our modelling is on “social” dynamics, we will also investigate methods to recast multibody systems into our high-dimensional framework in order to achieve nonstandard homogenization by random projections.
- Sparse optimal control in high-dimension and mean field optimal control: while self-organization of such dynamical systems has been so far a mainstream, we will focus on their sparse optimal control in high-dimension. We will investigate L1-minimization to design sparse optimal controls. We will learn high-dimensional (sparse) controls by random projections to lower dimension spaces and their mean field limit.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution de l’UE
€ 1 123 000,00
Adresse
Arcisstrasse 21
80333 Muenchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0