Objective
Being able to enhance and tune the interaction of a light wave with a molecule or nanoparticle on a fundamental level opens up an exciting range of applications such as more efficient solar cells, more sensitive photon detectors and brighter emitters for lighting applications. Nanoplasmonics promises to offer this level of control. Taking the current knowledge on nanoantennas a step further we will integrate them in organic and carbon-nanotube light-emitting devices to improve and tune their emission in unprecedented ways. As our testing platform we will use light-emitting field-effect transistors (LEFETs). Their planar structure, where the light emission zone can be positioned at any point allows for easy and controlled incorporation of plasmonic structures without interfering with charge transport. LEFETs can be made from a wide range of semiconducting materials. We will apply nanoantennas in LEFETs to 1) Enhance electroluminescence of high mobility organic semiconductors 2) Tune excitation decay and transition selection rules in organic semiconductors and 3) Enhance photo- and electroluminescence of single-walled carbon nanotubes. All of these materials offer high carrier mobilities and therefore high currents but have very low fluorescence efficiencies that can be improved substantially by nanoantennas. We will study the influence of nanoantennas on the fundamental emission properties of these different types of emitters. At the same time we will improve their efficiency in light-emitting devices and thus enable new and innovative applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nano-materials
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111012
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.