Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Critical phenomena in random matrix theory and integrable systems

Objective

The main goal of the project is to create a research group on critical phenomena in random matrix theory and integrable systems at the Université Catholique de Louvain, where the PI was recently appointed.
Random matrix ensembles, integrable partial differential equations and Toeplitz determinants will be the main research topics in the project. Those three models show intimate connections and they all share certain properties that are, to a large extent, universal. In the recent past it has been showed that Painlevé equations play an important and universal role in the description of critical behaviour in each of these areas. In random matrix theory, they describe the local correlations between eigenvalues in appropriate double scaling limits; for integrable partial differential equations such as the Korteweg-de Vries equation and the nonlinear Schrödinger equation, they arise near points of gradient catastrophe in the small dispersion limit; for Toeplitz determinants they describe phase transitions for underlying models in statistical physics.
The aim of the project is to study new types of critical behaviour and to obtain a better understanding of the remarkable similarities between random matrices on one hand and integrable partial differential equations on the other hand. The focus will be on asymptotic questions, and one of the tools we plan to use is the Deift/Zhou steepest descent method to obtain asymptotics for Riemann-Hilbert problems. Although many of the problems in this project have their origin or motivation in mathematical physics, the proposed techniques are mostly based on complex and classical analysis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITE CATHOLIQUE DE LOUVAIN
EU contribution
€ 1 130 400,00
Address
PLACE DE L UNIVERSITE 1
1348 LOUVAIN LA NEUVE
Belgium

See on map

Region
Région wallonne Prov. Brabant Wallon Arr. Nivelles
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0