Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Light-controlled and Light-driven Molecular Action

Objective

Important processes carried out by Nature’s machinery rely on proper regulation mechanisms. To achieve such control over various functions in man-made materials and devices light offers a superior advantage as an external stimulus and beyond as energy source. Photoswitchable entities provide an ideal platform to interface light with matter and therefore the proposed research program “Light 4 Function” aims at designing and developing new functional photochromic systems.

Building on the PI’s previous achievements and expertise, this broad program will be developing photochromic systems in four project areas for:
i) light-gated ligation, i.e. photocontrolling reversible attachment to complementary molecules, (bio)scaffolds, and surfaces to construct “smart” tags;
ii) light-controlled catalysis, i.e. phototuning the activity and selectivity in living polymerization processes to obtain remote-controlled catalysts;
iii) light-gated charge transport, i.e. photocontrolling current flow in single molecular junctions as well as in thin film organic transistors to create photoadressable organic devices;
iv) light-driven molecular motion, i.e. photoswitching macromolecules to generate maximum geometry changes in order to create sensitive optomechanic materials and devices.
The four project areas will be supported by efforts to further develop and optimize the utilized azobenzene and diarylethene photochromic components.

The photochromic systems will be designed such that they allow for optimal control over the chosen physico-chemical processes by light. Therefore, photons will be exploited to stimulate and drive molecular “action” at specific locations and/or at defined times. This superior control will enable complicated molecular processes to be orchestrated with the “flip of a light switch” and should lead to the development of light-responsive “smart” tags, catalysts, materials, and devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

HUMBOLDT-UNIVERSITAET ZU BERLIN
EU contribution
€ 1 494 000,00
Address
UNTER DEN LINDEN 6
10117 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0