Objective
"The least action principle is one of the most classical tools in the study of convex Hamiltonian systems. It consists in finding specific orbits by minimizing the Lagrangian action functional. Another powerful classical tool in Hamiltonian dynamics is the theory of canonical transformations, which provides a large class of admissible changes of coordinates, allowing to put many systems into simplified normal forms.
These two tools are difficult to use simultaneously because the Lagrangian action does not behave well under canonical transformations. A large part of the development of symplectic geometry in the second half of the last century consisted in bridging this gap, by developing a framework encompassing a large part of both theories. For example, the direct study of the Hamiltonian action functional (which, as opposed to the Lagrangian action functional, behaves well under canonical transformations) allowed to recover, refine, and generalize beyond the convexity hypothesis, most of the results concerning the existence of periodic orbits which had been proved with the least action principle.
Twenty years ago, under the impulsion of John Mather, a renewed use of the least action principle led to the proof of the existence of complicated invariant sets and unstable orbits. This collection of new methods has been called weak KAM theory in view of some similarities with the classical KAM theory.
Weak KAM theory, however, uses the least action principle in such a fundamental way that it does not not enter yet into the symplectic framework. My project is to address this problem. This overarching goal federates a number of questions in weak KAM theory, in Hamiltonian dynamics, in symplectic geometry and even in partial differential equations which will be the starting directions of my investigations."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics topology symplectic topology
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111012
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
75775 PARIS CEDEX 16
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.