Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Integrated signalling networks in muscle stem cells: cell fate regulation by heparan sulfates

Objective

"Skeletal muscle stem cells (satellite cells - SCs), are undifferentiated progenitors that reside mitotically quiescent in a specialized anatomical niche between the plasma membrane of muscle fibres and the basal lamina: the SC niche. SCs can remain quiescent for long periods of time, but in response to injury become rapidly activated, proliferate and then undergo terminal differentiation. The molecular mechanisms that coordinate the multiple signals involved in regulation of SC fate decisions are still largely unknown. Many of these mechanisms reside within the SC niche, possibly integrated by highly plastic components of the niche such as heparan sulfate proteoglycans (HSPGs). HS is a glycosaminoglycan polysaccharide containing variably sulfated disaccharide sequences and is present on the cell surface and in the extracellular matrix associated with core proteins to form HSPGs. These are key components of stem cell niches where they play important roles in regulating signalling events that control cell fate decisions. Here I will undertake advanced training-through-research in key post-genomic technologies (particularly glycomics, quantitative affinity proteomics, transcriptomics and bioinformatics) to underpin a systems biology approach to explore the role played by the SC niche in regulating SC fate decisions. The specific focus of the research project will be molecular mechanisms that are coordinated and integrated by HS and associated with two specific SC states: proliferation and differentiation. I will define the HS profiles, the set of proteins that interact with HS (HS-interactome) and whole transcriptomes in each state. I will then use bioinformatics tools to generate signalling network models to predict the molecular mechanisms involved in HS-coordinated integration of cell fate signals. Lastly, I will validate bioinformatics predictions by examining HS-dependence of candidate molecular mechanisms associated with SC fate transition."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE UNIVERSITY OF LIVERPOOL
EU contribution
€ 270 145,80
Address
BROWNLOW HILL 765 FOUNDATION BUILDING
L69 7ZX LIVERPOOL
United Kingdom

See on map

Region
North West (England) Merseyside Liverpool
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0