Objective
Understanding the rules and mechanisms underlying memory formation, storage and retrieval is a grand challenge in neuroscience. In light of cumulating evidence regarding non-linear dendritic events (dendritic-spikes, branch strength potentiation, temporal sequence detection etc) together with activity-dependent rewiring of the connection matrix, the classical notion of information storage via Hebbian-like changes in synaptic connections is inadequate. While more recent plasticity theories consider non-linear dendritic properties, a unifying theory of how dendrites are utilized to achieve memory coding, storing and/or retrieval is cruelly missing. Using computational models, we will simulate memory processes in three key brain regions: the hippocampus, the amygdala and the prefrontal cortex. Models will incorporate biologically constrained dendrites and state-of-the-art plasticity rules and will span different levels of abstraction, ranging from detailed biophysical single neurons and circuits to integrate-and-fire networks and abstract theoretical models. Our main goal is to dissect the role of dendrites in information processing and storage across the three different regions by systematically altering their anatomical, biophysical and plasticity properties. Findings will further our understanding of the fundamental computations supported by these structures and how these computations, reinforced by plasticity mechanisms, sub-serve memory formation and associated dysfunctions, thus opening new avenues for hypothesis driven experimentation and development of novel treatments for memory-related diseases. Identification of dendrites as the key processing units across brain regions and complexity levels will lay the foundations for a new era in computational and experimental neuroscience and serve as the basis for groundbreaking advances in the robotics and artificial intelligence fields while also having a large impact on the machine learning community.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology computational neuroscience
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111109
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
70 013 IRAKLEIO
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.