Objective
"Learning how to act optimally in high-dimensional stochastic dynamic environments is a fundamental problem in many areas of engineering and computer science. The basic setup is that of an agent who interacts with an environment trying to maximize some long term payoff while having access to observations of the state of the environment. A standard approach to solving this problem is the Reinforcement Learning (RL) paradigm in which an agent is trying to improve its policy by interacting with the environment or, more generally, by using different sources of information such as traces from an expert and interacting with a simulator. In spite of several success stories of the RL paradigm, a unified methodology for scaling-up RL has not emerged to date. The goal of this research proposal is to create a methodology for learning and acting in high-dimensional stochastic dynamic environments that would scale up to real-world applications well and that will be useful across domains and engineering disciplines.
We focus on three key aspects of learning and optimization in high dimensional stochastic dynamic environments that are interrelated and essential to scaling up RL. First, we consider the problem of structure learning. This is the problem of how to identify the key features and underlying structures in the environment that are most useful for optimization and learning. Second, we consider the problem of learning, defining, and optimizing skills. Skills are sub-policies whose goal is more focused than solving the whole optimization problem and can hence be more easily learned and optimized. Third, we consider changing the natural reward of the system to obtain desirable properties of the solution such as robustness, adversity to risk and smoothness of the control policy. In order to validate our approach we study two challenging real-world domains: a jet fighter flight simulator and a smart-grid short term control problem."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences artificial intelligence machine learning reinforcement learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111012
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.