Objective
The bio-electrochemically-assisted recovery of valuable resources from urine (ValueFromUrine) project will develop, optimize and evaluate an innovative bio-electrochemical system that allows for the recovery of phosphorus (P), ammonia (NH3) and electricity (E) or hydrogen from urine. The innovative principle is that biological oxidation of organics (present in urine) at a bio-anode drives both the transport of ammonium over a membrane (which allows the recovery of NH3) and the production of alkalinity (which can be utilized for the precipitation of P-salts).
Toilets and urinals that collect urine separately from other wastewater streams, are increasingly being installed in newly constructed utility buildings or during renovation of old buildings. Unlike any state-of-the art technology, the ValueFromUrine technology not only has the potential to recover over 95% of the P and NH3 from urine, but also to produce chemicals (NaOH, KOH) and energy. The ValueFromUrine consortium is made up of complementary knowledge institutes, SMEs and industry partner, each of them leading in one or more relevant fields (electrochemistry, membrane technology, microbiology, micro-pollutants and decentralized wastewater treatment). Moreover, all commercial partners have experience in the validation of new technologies. The participating SMEs have a key function in the consortium, which is reflected by the fact that 41% of the requested funding will go to the SMEs for research and technology development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- natural scienceschemical scienceselectrochemistrybioelectrochemistry
- natural scienceschemical scienceselectrochemistryelectrolysis
- engineering and technologychemical engineeringseparation technologies
- natural sciencesbiological sciencesmicrobiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
FP7-ENV-2012-two-stage
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
8911 MA Leeuwarden
Netherlands