Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Tris-heteroleptic cyclometalated iridium(III) complexes for white electroluminescence

Objective

For economical and ecological reasons, limiting the use of fossil fuel is one of the greatest challenges of our time. Nowadays, about 20% of the European electrical energy is used for lighting and considerable savings could be achieved by developing more efficient lighting systems. Electroluminescent (EL) devices based on organic thin-films are considered as one of the most promising response to the demand for efficient lighting technology.

In EL devices, light originates from the radiative relaxation of an excited state localized on a luminescent molecule (the dopant). Due to their suitable photophysical properties, cyclometalated iridium(III) complexes are arguably the most studied family of phosphorescent dopants for OLEDs during the last decade. Organic white light-emitting devices (WOLEDs) are obtained by combining the emission from blue, green and red emitters. Different approaches can be used to mix the emission of the different emitters but they all require complex device architectures, which have a direct impact on the cost of production, greatly hindering their market entry.

The aim of the proposal is to develop white light emitting single centered phosphorescent emitters (WSCPEs) to simplify the processing of the devices, resulting on the long term in significant costs reduction. WSCPEs are molecules displaying broad emission covering most of the visible spectrum, this emission originating from a single active center (no excimer, no dual-emission, no double-emission from two active centers).

During the project, we will:
(1) study tris-heteroleptic iridium(III) phosphorescent complexes of the form [Ir(C^N1)(C^N2)(La)] (C^Nx = bidentate cyclometalated ligand, La = ancillary ligand(s));
(2) determine the electronic and geometric parameters controlling their photophysical and electrochemical properties;
(3) exploit this knowledge to prepare efficient single-center broad emitters for white light emitting electroluminescent devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

THE UNIVERSITY OF BIRMINGHAM
EU contribution
€ 100 000,00
Address
Edgbaston
B15 2TT Birmingham
United Kingdom

See on map

Region
West Midlands (England) West Midlands Birmingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0