Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Real-time nanoscale optoelectronics

Objective

Is it possible to really ‘see’ how fast electrons flow in nanoscale optoelectronic circuits? Can we, in this way, get a complete understanding of the real-time dynamics of electrons in nanoscale circuits?

The vision of this ERC proposal is to establish a research area at the interface of condensed matter physics, ultrafast optics, and electrical engineering which has so far been nearly completely unexplored: the investigation of real-time dynamics of photoexcited charge carriers in electrically contacted nanosystems with the highest precision possible. By doing so, unique information about the optoelectronic processes in nanoscale circuits shall be obtained. Four interconnected visions are pursued all with applications in information technology and electrical engineering. The approach is risky, however, it promises very interesting physics on the way. We will: (i) explore the fastest and smallest photoswitches fully integrated in electric circuits, (ii) probe single and collective charge excitations for the fastest nanoscale optoelectronic devices, (iii) determine the radiative and non-radiative lifetimes in photovoltaic circuits time-resolved, (iv) discover how fast nanoscale photo-thermoelectric devices operate. Towards these visions, I propose to use a real-time optoelectronic ‘on-chip’ detection scheme for nanoscale circuits, which was developed by us very recently. In this setup, I intend to carry out time-of-flight experiments of photoexcited electrons in nanoscale circuits, to investigate the ultimate switching speed of optoelectronic devices, and to explore the ultrafast dynamics of photothermo-electric currents in electrically contacted nanosystems.
The project gives essential insights for designing and implementing nanoscale circuits into optoelectronic switches, photodetectors, solar cells, thermo-electric devices as well as high-speed off-chip/on-chip communication modules to make ultrafast nanoscale optoelectronics real.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAET MUENCHEN
EU contribution
€ 1 272 196,18
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0