Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Diffraction Based Transmission X-ray Microscopy

Objective

The aim of this project is to develop a diffraction based transmission X-ray microscope, d-TXM, for non-destructive structural characterization of polycrystalline materials such as metals, ceramics, semiconductors, dust, soil and rocks, and for R&D applications in e.g. the energy-, electronics- and environmental sectors. Uniquely, d-TXM will be able to visualise the grains inside 100 micrometer thick specimens with a spatial resolution of 10-30 nm. Up to a thousand grains may be mapped simultaneously in three dimensions with respect to morphology, phase, orientation and local stress-state. Furthermore, the method will be sufficiently fast to enable the acquisition of 3D movies of the time evolution of the structure in nano-materials and components during synthesis, processing or operation.
During the last decade the applicant pioneered and matured a set of X-ray based methods for 3D studies of polycrystals on the micrometre scale. For this achievement, he is recognized as a worldwide leading figure in X-ray instrumentation for structural materials, situated at a nodal point between materials, X-ray physics, applied mathematics and crystallography. The underlying vision of d-TXM is similar to this past work, but in terms of optics the microscopy approach is radically different and the spatial resolution will be two orders of magnitude better.
In this project, the scientific potential will be demonstrated by means of applications to selected issues in metallurgy. Being able to directly observe the evolution of the individual crystalline elements, our understanding of processes such as plasticity and phase evolution can be greatly enhanced.
Dissemination to other fields will take place via an advisory board of future users and a workshop. Continuity of the project is ensured by the technique being implemented at the European Synchrotron Research Facility.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

DANMARKS TEKNISKE UNIVERSITET
EU contribution
€ 2 499 860,00
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0