Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Efficient Tumor Targeting and Therapy Using Near-Infrared Nanoparticles

Objective

Photodynamic Therapy (PDT) is a clinically approved cancer treatment relying on the use of a photosensitizer, i.e. a fluorescent molecule producing cytotoxic species upon irradiation with light. PDT also provides the ability to image and locally treat diseased tissues without ionizing radiations, thus sparing healthy tissue. Yet, only five photosensitizers are now approved for clinical applications and all suffer from serious drawbacks, including low selectivity and skin sensitization.
Photosensitizer-loaded nanoparticles could potentially solve these problems. They can accumulate at the site of tumors by either passive or active targeting. Their physicochemical properties can also be tuned to accelerate clearance, and reduce non-specific binding. In this study, we propose to investigate a novel class of polymer-based organic nanoparticles whose most relevant physicochemical properties can easily be tuned by controlling synthesis parameters.
Benefiting from expertise of researchers at the Beth Israel Deaconess Medical Center (Boston, MA, United States), the research fellow will design a wide range of polymer fluorescent nanoparticles. These particles will be tested to find a formulation with optimal blood half-life, low non-specific binding and good targeting capabilities. The research fellow will then synthesize and test the most efficient particles at the Institut Albert Bonniot (Grenoble, France) on head and neck tumor rodent models using 2D and 3D fluorescence imaging. The PDT efficacy will be monitored by following tumor growth and survival rate of the animals.
This fellowship application has the potential to solve a longstanding problem in PDT while providing outstanding international training and promoting the career of a talented European researcher.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

UNIVERSITE JOSEPH FOURIER GRENOBLE 1
EU contribution
€ 268 555,20
Address
Avenue Centrale, Domaine Universitaire 621
38041 GRENOBLE
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0