Project description
FET Proactive: Unconventional Computation (UCOMP)
BIOMICS uses mathematics to translate models of biological systems into novel approaches to computing based on interaction.
Interaction Computing (IC) takes inspiration from cellular processes rather than from evolution. BIOMICS aims to leverage existing cell metabolic and regulatory mechanisms as the ontogenetic basis of a model for IC. However, because the knowledge to properly mimic, exploit and adapt these systems to computer science is lacking, BIOMICS will also advance the state of the art in the mathematics of biocomputing. The mathematical structure thus uncovered feeds into two different and complementary directions. On the one hand, it will inform the automata theory formalisms for IC; on the other hand, it will be mapped through category theory to the logic foundations of the BIOMICS specification language. Whereas the automata theory research will focus on the structural properties of self-organising systems, the BIOMICS specification language will instead focus on the specification of self-organising behaviour. By end of Year 2 we will have developed the formal tools and frameworks from both points of view of the behaviour-realisation dichotomy to be able to effect their synthesis in the form of an environment which, through interactions, is capable of generating useful software systems that match the biological structure template – and are therefore themselves based on interactions. This foundational mathematical work of BIOMICS will be applicable to software systems of a radically new kind and to systems biology, creating a unified mathematical framework for understanding, predicting, manipulating, and dynamically synthesising algorithmic activity-in-context based on interactions (i.e. interaction computation) in both realms. This will be demonstrated not only by the application of the framework to the analysis of complex-adaptive biological systems beyond those studied in the course of its development, but also by proof-of-concept implementations of software systems (for example demonstrating security properties) as a potential new paradigm for unconventional computing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencessoftwaresoftware applicationssystem software
- natural sciencesmathematics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
FP7-ICT-2011-8
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
AL10 9AB Hatfield
United Kingdom