Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

"VERTICAL MICROFLUIDIC PROBE: A nanoliter ""Swiss army knife"" for chemistry and physics at biological interfaces"

Objective

Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:

(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control.
(2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information.
(3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries.
(4) Patterning cells for applications in regenerative medicine.

Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

IBM RESEARCH GMBH
EU contribution
€ 1 488 600,00
Address
SAEUMERSTRASSE 4
8803 RUESCHLIKON
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0