Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Fabrication and characterization of dielectric encapsulated millions of ordered kilometer-long nanostructures and their applications

Objective

The objective of this project is the realization of a radically new nanowire fabrication technique, and exploration of its potential for nanowire based science and technology. The proposed method involves fabrication of unusually long, ordered nanowire and nanotube arrays in macroscopic fibres by means of an iterative thermal co-drawing process. Starting with a macroscopic rod with an annular hole tightly fitted with another rod of another compatible material, by successive thermal drawing we obtain arrays of nanowires embedded in fibres. With the method, wide range of materials, e.g. semiconductors, polymers, metals, can be turned into ordered nanorods, nanowires, nanotubes in various cross-sectional geometries. Main challenges are the thermal drawing steps that require critical matching of the viscoelastic properties of the protective cover with the encapsulated materials, and the liquid instability problems and phase intermixing with higher temperatures and smaller feature sizes that require high thermal and mechanical precision. Initially, fabrication by drawing will begin with soft amorphous semiconductors, phase change materials, polymers of interest in high temperature polymers, followed by a wider range of materials, low melting temperature metals, metals and common semiconductors (Si, Ge) in silica glass matrices. In this way nanowires that are ordered, easily accessible and hermetically sealed in a dielectric encapsulation will be obtained in high volumes. Potentially, these nanowires are advantages over on-chip nanowires in building flexible out of plane geometries, light weight, wearable and disposable devices. Ultimately, attaining ordered arrays of 1-D nanostructures in an extended flexible fibre with high yields will facilitate sought-after but up-to-now difficult applications such as the large area nanowire electronics and photonics, nanowire based scalable phase-change memory, nanowire photovoltaics, and emerging cell-nanowire interfacing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

BILKENT UNIVERSITESI VAKIF
EU contribution
€ 1 495 400,00
Address
ESKISEHIR YOLU 8 KM
06800 Bilkent Ankara
Türkiye

See on map

Region
Batı Anadolu Ankara Ankara
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0