Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

SYnaptic MOlecular NEtworks for Bio-inspired Information Processing

Project description


FET Proactive: Unconventional Computation (UCOMP)

The SYMONE long-term vision is to build multi-scale bio-/neuro-inspired systems interfacing/connecting molecular-scale devices to macroscopic systems for unconventional information processing with scalable neuromorphic architectures. The SYMONE computational substrate is a memristive/synaptic network controlled by a multi-terminal structure of input/output ports and internal gates embedded in a classical digital CMOS environment. The SYMONE goal is the exploration of a multiscale platform connecting molecular-scale devices into networks for the development and testing of synaptic devices and scalable neuromorphic architectures, and for investigating materials and components with new functionalities. The generic breakthrough concerns proof-of-concept of unconventional information processing involving flow of information via short-range interactions through a network of non-linear elements: switches, memristors/synapses. These will require several breakthroughs concerning the functionality of reasonably complex networks of simple components, and the fabrication of networks of devices, including self-assembly and multi-scale interfacing/contacting between such networks.Memristive networks are expected to solve unconventional computational problems, e.g. solving maze problems and implementing dynamic multiplexers. The overall SYMONE objectives are to implement 2D memristic arrays and networks, establish multi-scale electrical connections, and to demonstrate bio-inspired functional behaviour in such systems. On the experimental side, SYMONE will work with lithographically defined NxN arrays of proven individual memristive elements (Nanoparticle Organic Memory FETs (NOMFETs), as well as self-assembled nanoparticle (NP) networks (NPSAN) with functionalised NPs. The theoretical aspects involve detailed physical and compact models for the network elements and networks, and schemes for elementary information processing with such networks.SYMONE combines the advantages of a bottom-up approach based on molecular-scale objects and of a top-down approach based on functional modeling at the circuit level. The electronic properties of the nano-objects can be reproducibly modulated by the versatility of chemical synthesis. Such a solution is thus expected to provide continual scaling of device dimensions, or new architectures of electronics, or potential low-cost technologies, or all this together.SYMONE implements the vision of robust fault-tolerant information processing at molecular scale interfaced to conventional CMOS computers. The molecular-scale devices will be characterized and configured via post-fabrication learning without prior knowledge of the detailed structure of the self-assembled molecular network. This vision is also one of the very few routes for molecular scale information technology that does not suffer, from the start, from the same type of limitations as the ultimate CMOS technology with regard to ultra-dense computing applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-8
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

CHALMERS TEKNISKA HOGSKOLA AB
EU contribution
€ 439 949,00
Address
-
412 96 Goteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0