Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Reverse engineering of vascular patterning through mosaic in vivo analysis of endothelial cell shape regulation

Objective

Current angiogenesis research using genetic loss-of function approaches in mouse and zebrafish models provides for a growing number of genes implicated in blood vessel formation. Mechanistic insight often remains unsatisfactory as phenotypes fall into common categories. Our recent cell competition models combined with computational analysis have transformed the way we can study mechanisms in vascular patterning.

I propose to systematically exploit mosaic analysis in vivo to deconstruct vascular pattern formation in development and disease. Single differentially labelled cells in mouse and zebrafish will be analysed to establish the first catalogue of endothelial cell shapes in reference to the position and developmental phase of the plexus. Dynamic imaging will describe functional shape transitions. Advanced computational analysis of 3D-segmented cell shapes using an optimized set of shape descriptors will be performed to find natural clusters via an unsupervised expectation maximization algorithm. Cross-correlation of shape clusters with gene expression, signalling, oxygen, polarity and cytoskeleton markers will be used to understand how cell shape relates to signalling and local environment. Pharmacological and clonal genetic gain and loss-of-function will be used to analyse dynamic regulation of cell shape leading to altered vascular patterning. Mosaic analysis in retinopathy and tumour models will enable unprecedented resolution to study vascular malformation. Sequential time-lapse imaging in combination with clinical imaging modalities will be used to bridge the gap between experimental and clinical tumour vasculature imaging, enabling us to ask how local environmental changes in the tumour affect blood vessel patterning.

Successful completion of this work will establish the cellular and molecular principles governing vessel remodelling and provide a new conceptual framework and methodology for the analysis of pathological vascular patterning.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

VIB VZW
EU contribution
€ 1 373 503,00
Address
SUZANNE TASSIERSTRAAT 1
9052 ZWIJNAARDE - GENT
Belgium

See on map

Region
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0