Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Simulation of the Kinetics and Inverse Problem for the Protein PolymERization in Amyloid Diseases (Prion, Alzheimer’s)

Objective

Amyloid diseases are of increasing concern in our aging society. These diseases all involve the aggregation of misfolded proteins, called amyloid, which are specific for each disease (PrP for Prion, Abeta for Alzheimer's). When misfolded these proteins propagate the abnormal configuration and aggregate to others, forming very long polymers also called fibrils. Elucidating the intrinsic mechanisms of these chain reactions is a major challenge of molecular biology: do polymers break or coalesce? Do specific sizes polymerize faster? What is the size of the so-called nucleus, i.e. the minimum stable size for polymers? On which part of the reactions should a treatment focus to arrest the disease ? Up to now, only very partial and partially justified answers have been provided. This is mainly due to the extremely high complexity of the considered processes, which may possibly involve an infinite number of species and reactions (and thus, an infinite system of equations).

The great challenge of this project is to design new mathematical methods in order to model fibril reactions, analyse experimental data, help the biologists to discover the key mechanisms of polymerization in these diseases, predict the effects of new therapies.
Our approach is based on a new mathematical model which consists in the nonlinear coupling of a size-structured Partial Differential Equation (PDE) of fragmentation-coalescence type, with a small number of Ordinary Differential Equations.
On the one hand, we shall solve new and broad mathematical issues, in the fields of PDE analysis, numerical analysis and statistics. These problems are mathematically challenging and have a wide field of applications. On the other hand we want to test their efficacy on real data, thanks to an already well-established collaboration with a team of biophysicists. With such a continuing comparison with experiments, we aim at constantly aligning our mathematical problems to biological concerns.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
EU contribution
€ 1 008 569,00
Address
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
France

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (3)

My booklet 0 0