Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Graphene doping and texturing in efficient electrodes for organic solar cells

Objective

Organic semiconductor solar cells are a promising route to scalable, economically viable, energy conversion technologies due to the potential for development of low-cost, flexible, large-area cells and modules.
In order to achieve the goal of obtaining efficient bulk heterojunction solar cells (BHJ-SCs), graphene electrodes have been recently proposed as a promising candidate. Research is however at the very beginning, so that if graphene will manage to accomplish this task still has to be proved.
In particular, many questions remains open like the degree of interaction of graphene with the polymeric layer, which could degrade the outstanding graphene electron conductivity, as well as the graphene/polymer electron affinity, which plays an important role in the overalls solar cell efficiency. Furthermore, up to now no analysis on light management improvements induced by structuring graphene as photonic crystal for light trapping in BHJ-SC has been reported.
The GO-NEXTS project, will focus its attention on new kind of electrodes based on doped, textured (ie 3D) graphene electrodes, in order to increase the overall efficiency and performance of bulk heterojunction solar cells. To our knowledge, this represents the first proposal to enhance light trapping in a solar cell by structuring one or more graphene contact electrode(s) to act as photonic crystal(s).
The project will leverage the combination of two different fabrication processes, and in particular the doping of the graphene, to obtain semi-transparent electrodes as well as the texturing of the electrodes. This approach, which has never been proposed before, represents a high-risk, high-impact approach. If successful, it should lead to improvements in solar cell efficiency by up to 14%. Furthermore, all the technologies proposed are suitable for large area realization paving the way for a scalable, economic fabrication technologies on low-cost flexible substrates.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ENERGY-2012-1-2STAGE
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
EU contribution
€ 435 490,00
Address
VIA CRACOVIA 50
00133 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0