Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Multistage-Multifunctional Porous Silicon Nanovectors for Directed Theranostics

Objective

The progress of nanotechnology during the last decades has had a strong impact to the current research of biomedical applications, in particular against dreadful diseases such as cancer. It is estimated that more than 12 million cases of cancer are diagnosed every year worldwide. Multidrug resistance, rapid elimination by the immune system, enzymatic degradation, and poor targeting efficiency are still the major obstacles of the nanomedicines used in cancer therapy. The integration of imaging and therapeutic agents into a single carrier (theranostics) allows simultaneously detection, diagnostics, and treatment of the diseases, which may enhance both expectancy and quality of life of the patients.
In the proposed project a systematic approach is taken towards developing and testing of novel multistage–multifunctional nanovectors based on the fusion between stage-2 nanoporous silicon nanoparticles and stage-1 polymersomes (fused materials = protocells, cell-like particles) for directed (targeted/personalized) therapy and multimodal imaging. With this approach it is aimed to decouple the quadruple functions of the protocell nanovectors in order to generate relevant preclinical information for rapid translation into the clinic: sufficient multifunctionality to avoid biological barriers, recognition of their targets, accounting for non-invasive in vivo imaging and delivery of therapeutics. The overall distinct and final milestones are: to ligand-anchored, co-loading of drug(s)-dye(s), and dual radiolabelling of the precisely tailored protocell nanovectors for simultaneously targeting the tumour vasculature cells, stimulating the immune system response and multimodal imaging in vivo. It is also aimed to evaluate the suitability and effectiveness of the designed nanodevices by employing in vitro models and in vivo imaging techniques and to achieve a comprehensive and deeper understanding on the cellular interactions between the protocell nanovectors and the cancer cells.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

HELSINGIN YLIOPISTO
EU contribution
€ 1 499 603,00
Address
FABIANINKATU 33
00014 HELSINGIN YLIOPISTO
Finland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0