Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Non perturbative effects in gauge and string theories

Objective

"The ultimate goal of any theory describing nature is to be able to predict, on the basis of few assumptions, the behaviour of its components. Quantum field theory has enjoyed great success in this respect. The quantity which describes the behaviour of the components of the theory is called scattering amplitude: it describes the effect of the interaction of a subset of the components of the system with the rest of it. This interaction depends crucially on a parameter of the theory, the coupling constant, whose magnitude may vary with the energy. The quantum field theory of our interest is the Standard Model of particle physics, the theory which describes the behaviour of protons, neutrons, quarks, photons, leptons and massive gauge bosons. The coupling constant of the theory is small for a wide range of energies. In this regime there is a very efficient computational tool, called perturbation theory, which have proved successful both at the theoretical level, allowing for many interesting computations, and at the experimental level where many of those computations have been measured. The opposite regime (large coupling constant) is called non-perturbative and very little is known about it mainly for the lack of computational tools to approach it. The aim of this project is to develop and use efficient mathematical tools to compute the relevant characteristics of a variant of the Standard Model, the Supersymmetric Standard Model a theory soon to be tested by the new European facility at CERN: the Large Hadron Collider (LHC). In order to do so we plan to hire a top-class researcher from a third country who is a founder and an expert in the field of non perturbative techniques, in which European groups are already world-leaders. This will strengthen the relationship between our laboratory and the host institution of the researcher to be hired which is already under way since we have already hired (for two years) a younger researcher from that institution."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-2-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIFR - International incoming fellowships (Return phase)

Coordinator

AI ALIKHANYAN NATIONAL SCIENCE LABORATORY YEREVAN PHYSICS INSTITUTE FOUNDATION
EU contribution
€ 15 000,00
Address
2 ALIKHANYAN BROTHERS STREET
0036 YEREVAN
Armenia

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0