Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Spike-based predictive coding: Closing the loop between neural dynamics and computation

Objective

Progress in understanding brain functions rely in great part on filling the conceptual and experimental gaps between different levels of analysis, from single neurons to behaviour. Thus, “rate models”, units of representations are the mean activity of large neural populations, while function and behaviour emerge from the responses of very large networks. While experimental investigations have focused on predicting (describing) spiking neural responses from their (sensory or synaptic) inputs, functional models instead concentrate on understanding how neural populations represent properties of (i.e. predict) the world.
This proposal aims at developing an alternative approach, spike-based predictive coding. It combines two basic hypotheses: Neural networks reliably estimate the state of the environment based on their inputs and prior experience. And their dynamics insures that these estimates can be decoded from their spike trains by postsynaptic integration . By monitoring and decoding its own outputs, the neural structure itself closes the loop between computation and dynamics.
Membrane potentials of model neurons compute a difference between the state estimates constructed from their inputs and the estimate encoded in their outputs. Interestingly, this purely functional approach converges towards powerful descriptive models of spiking neurons, e.g. adaptive integrate and fire neurons, chaotic attractors in balanced spiking networks and generalized linear models (GLMs).
We will use this approach to explore the dynamics of single spiking neurons, suggest new ways of interpreting and exploring sensory and motor spiking neural representations, re-explore the role of top-down attention in sensory processing, and show that previous rate-based interpretations severely under-estimated the precision of the neural code.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ECOLE NORMALE SUPERIEURE
EU contribution
€ 1 276 800,00
Address
45, RUE D'ULM
75230 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0