Objective
I propose novel methods for understanding key aspects that are essential
to the future of Bayesian inference for high- or infinite-dimensional
models and data. By combining my expertise on empirical processes and
likelihood theory with my recent work on posterior contraction I shall
foremost lay a mathematical foundation for the Bayesian solution to
uncertainty quantification in high dimensions.
Decades of doubt that Bayesian methods can work for high-dimensional
models or data have in the last decade been replaced by a belief that
these methods are actually especially appropriate in this
setting. They are thought to possess greater capacity for
incorporating prior knowledge and to be better able to combine data
from related measurements. My premise is that for high- or
infinite-dimensional models and data this belief is not well founded,
and needs to be challenged and shaped by mathematical analysis.
My central focus is the accuracy of the posterior distribution as
quantification of uncertainty. This is unclear and has hardly been
studied, notwithstanding that it is at the core of the Bayesian
method. In fact the scarce available evidence on Bayesian credible
sets in high dimensions (sets of prescribed posterior probability)
casts doubt on their ability to capture a given truth. I shall discover
how this depends strongly on the prior distribution, empirical or
hierarchical Bayesian tuning, and posterior marginalizaton, and therewith
generate guidelines for good practice.
I shall study these issues in novel statistical settings (sparsity and
large scale inference, inverse problems, state space models,
hierarchical modelling), and connect to the most recent, exciting
developments in general statistics.
I work against a background of data-analysis in genetics, genomics,
finance, and imaging, and employ stochastic process theory,
mathematical analysis and information theory.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics
- natural sciences mathematics applied mathematics statistics and probability bayesian statistics
- natural sciences mathematics pure mathematics mathematical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
2311 EZ Leiden
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.