Objective
Chronic inflammatory diseases, such as, for example, asthma, afflict millions of people worldwide. Nevertheless, the molecular mechanisms that drive inflammation remain poorly understood. Enzymes play a crucial regulatory role in inflammation and represent potential drug targets. Nevertheless, the activities of these enzymes are poorly studied due to a lack of convenient tools for modulation and detection. The importance of this issue is demonstrated by my previous work on small molecule probes for protein palmitoylation. It becomes increasingly clear that the slow advance in the development of chemistry-based methods to study enzyme activity in its physiological context delays drug discovery.
To address this problem further, I will develop novel detection methods and small molecule inhibitors to study inflammatory signal transduction pathways. Protein acetylations at lysine residues have a broad regulatory scope. Acetylations of histones form a major part of the histone code for epigenetic regulation of gene-transcription. In addition, reversible acetylations of non-histone proteins proved to be crucial for regulation of nuclear factor kB (NF kB) mediated gene transcription.
I aim to study the role of acetylations of histones and other proteins in NF kB mediated gene transcription. Firstly, I will develop a novel bioorthogonal ligation strategy for chemical labeling of protein acetylation in cells (aim 1) by employing the oxidative Heck reaction. Secondly, I will be the first to systematically investigate changes in protein acetylation in response to activation of the NF kB pathway using a proteomics strategy (aim 2). Thirdly, I will develop small molecule inhibitors of acetyltransferases and study their impact on acetylations that regulate the NF kB signaling pathway (aim 3).
Ultimately, these newly developed detection methods and small molecule inhibitors open up opportunities for drug discovery aimed at epigenetic regulation of NF kB mediated inflammation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciencesbasic medicinepharmacology and pharmacydrug discovery
- medical and health sciencesclinical medicinepneumologyasthma
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- medical and health scienceshealth sciencesinflammatory diseases
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2012-StG_20111109
See other projects for this call
Funding Scheme
ERC-SG - ERC Starting GrantHost institution
9712CP Groningen
Netherlands