Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

VISUAL MODELLING USING GANGLION CELLS

Project description


FET Proactive: Neuro-Bio-Inspired Systems (NBIS)

The processing capabilities of biological visual systems are still vastly superior in terms of performance for real-time and low-power applications compared with conventional artificial vision. There is increasing evidence that biology has evolved a multitude of cell types, including at the level of the retina, to adapt to an extensive set of dynamic visual environments. Existing bio-inspired artificial vision technology has failed to consider the utility of modelling this rich diversity of cells, despite the fact that these cells are crucial to biology's ability to process the natural visual environment. To address this shortcoming, the VISUALISE project will create a refined understanding of retinal function in natural visual environments, enhanced models of biological signal processing in the retina and the next generation of bio-inspired asynchronous vision sensors.
To achieve these objectives we will combine the efforts of physiologists, computational neuroscientists, neuromorphic electronic engineers, and roboticists, to build novel theoretical and hardware models of biological retinal ganglion cell types for dynamic vision applications. We will 1) record the activities of vertebrate retinal ganglion cells using multi-electrode arrays under dynamic natural stimulation, 2) analyse the functional response properties to expose new principles of spike encoding that bridge the gap between single cell and population information processing, 3) exploit these principles in multi-scale mathematical models which permit efficient digital circuit implementations for a next generation of real-time event-based vision sensors, and 4) evaluate their effectiveness in a challenging predator-prey high-speed robot scenario.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-9
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

UNIVERSITY OF ULSTER
EU contribution
€ 509 732,00
Address
CROMORE ROAD
BT52 1SA Coleraine
United Kingdom

See on map

Region
Northern Ireland Northern Ireland Causeway Coast and Glens
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0