Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

High-Fidelity and High-Performance Laminar Wing Optimization

Objective

"Proposed work aims at developing efficient optimization tools for NLF design where the cost function is the total drag (pressure and friction). The tool utilizes efficient and accurate computation of gradients of objective functions as well as robust parametrization of the geometry. Our approach uses Computational Fluid Dynamics followed by accurate boundary-layer stability analysis in order to find, by optimization, geometries that damp growth of boundary-layer disturbances in order to delay the laminar-turbulence transition. Gradient-based optimization and adjoint solvers are used in order to obtain the best numerical efficiency. The gradients are obtained through a chain of computations including adjoints of the flow equations and of the parabolized stability equations. Our method was initially developed for airfoils and recently extended to 3D wing design. Here, the tool will be improved by replacing the Euler equations of fluid dynamics by the Reynolds-Averaged Navier-Stokes (RANS) equations. This allows us to account for the viscous-inviscid interactions and therefore obtain a more accurate evaluation of the aerodynamic performances such as the total drag, lift and pitching moment. In order to ensure high accuracy of the gradients, the adjoint of the RANS solver will include adjoint of the turbulence model. A mesh-less method based on Radial Basis Functions will be used for deforming the RANS meshes. This approach has proven to be much faster than elliptic smoothers on meshes that are suitable for RANS computations. Here, two shape parametrization methods suitable for industrial design will be implemented and compared. Further, an automatic and efficient procedure for nonlocal stability analysis will be implemented in order to facilitate the use of this approach in industrial projects."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2012-01
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

TOTALFORSVARETS FORSKNINGSINSTITUT
EU contribution
€ 128 340,00
Address
Gullfossgatan 6
164 90 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0