Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Modular CMOS Photonic Integrated Micro-Gyroscope

Objective

Space system vendors seek for solutions to deliver small size and cost-effective sensor systems to “de-congest” satellite payloads, drastically reduce the equipment cost and open the possibility for new generation of micro-payload systems. MERMIG aims to provide this technology replacing current expensive, bulky, heavy and power-consuming fiber optic gyroscopes (FOGs). To address these key challenges, MERMIG invests in the right mix of silicon photonic CMOS-compatible component fabrication and nano-imprint lithography laser fabrication. Both technologies are being adopted by the terrestrial telecom market and MERMIG will develop them for bringing their unique advantages into space sensor systems. MERMIG will squeeze the bulky FOG into a couple of cm2, integrating a racetrack cavity, pin junctions and a phase decoder into compact sub-micron waveguides. The MERMIG “smart” packaging technique will allow power-efficient optical pumping and hermetic packaging of the gyro-photonic chip. MERMIG will develop the first 1550nm high-power laser with a fiber-coupled power of 150mW using an integrated laser MOPA, fabricated with advanced nano-imprint lithography (NIL). The 150mW delivered will enable a modular architecture, with pump sharing among 3 integrated silicon lasing cavities, for 3-axis sensing. The single-step NIL process enables fast wafer scale patterning and ensures low-cost and high-volume laser production. Finally, MERMIG will bring together photonics and electronics on a fully-functional opto-electronic gyroscope system prototype characterized according to ASTRIUM testplan procedures. MERMIG will deliver to ASTRIUM a new generation gyroscope that will weigh <1kg, consume <5W electrical power in a few cm3 footprint. The angle random walk range that will be feasible within MERMIG is 0.1 – 0.01 deg/sqrt(hr) suitable for telecommunications and scientific satellites. The technology full potential can allow for future opto-electronic integration of photonic “gyroscopes-on-a-chip”.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SPACE-2012-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

UNIVERSITAT POLITECNICA DE VALENCIA
EU contribution
€ 212 038,50
Address
CAMINO DE VERA SN EDIFICIO 3A
46022 VALENCIA
Spain

See on map

Region
Este Comunitat Valenciana Valencia/València
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0