Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Surface Enhanced NMR Spectroscopy

Objective

The ability to determine molecular structures from single crystals by diffraction methods has transformed science. However, if the system under investigation is located at a surface, the problem of structure elucidation is largely unsolved. Due to the increasing frequency with which such samples are encountered, particularly in the area of new materials for energy and catalysis, there is a critical need for the development of new methods for structure characterization of surfaces.
Nuclear magnetic resonance (NMR) spectroscopy would be the method of choice for characterizing surfaces were it not that the detection limit is far too low to allow many modern materials to be examined. The sensitivity of NMR thus poses the major limitation to surface characterization.
We recently introduced a new approach using Dynamic Nuclear Polarization (DNP) to enhance surface NMR signals. The project will capitalize on this new concept and develop DNP surface enhanced NMR spectroscopy (DNP SENS) through a series of new concepts to address the following challenges: (i) to characterize materials with surface areas three orders of magnitude lower than currently, specifically to detect surface NMR signals from materials with surface areas of ~1 m2/g, rather than ~1000 m2/g today; and (ii) to determine structure-activity relationships in advanced functional materials, specifically by developing NMR correlation methods capable of determining structure and dynamics of surface species in conjunction with DNP SENS.
These objectives require a gain in DNP SENS sensitivity of three orders of magnitude, and we propose to do this through innovative NMR experiments, better DNP enhancements, isotopic labeling, and high magnetic fields. The approaches go well beyond the frontier of current research.
The project will yield a broadly applicable method for structural characterization of complex surfaces not previously available by any other approach, resulting in new chemistry and chemical processes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120216
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU contribution
€ 1 032 807,86
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0