Objective
"Flexible polyurethane (PU) foams are widely used in many industrial applications including automotive and aeronautics as fillers for seats, headrests etc. They are made from a reaction of two primary ingredients: an isocyanate and a polyol. Originally, these raw materials were derived from petrochemical feedstocks. The use of bio-polyols, i.e. derived from vegetable oils, as an alternative to standard polyols started around 2004 due to the rising costs of petroleum feedstocks and a growing concern for the environment.
But, these bio-polyols can only replace a portion of the polyol part in the formulation and they need to be blended with petroleum-based polyols to maintain the foam physical and mechanical properties. Face to a growing demand for products based on renewable resources, foam manufacturers need to increase that ratio in the formulations while delivering the same foam quality.
On top of that, foams used in the aircraft industry, for seat cushions for instance, need to pass highly stringent fire performance tests. It is well-known that the chemical nature of the polyurethane, its low density and the open cell structure cause this material to be highly flammable. In order to achieve high flame resistance requirements, polyurethane foams must be formulated with flame retardants. A multiplicity of flame retardants is known and commercially available for this purpose, like halogenated flame retardants. However, considerable toxicological reservations frequently stand in the way of their use and alternatives are expected.
In the FIBIOSEAT project, AXYAL, an innovative SME specialized in the industrial transformation of plastics and composites which owns a leading edge expertise in PU foaming and fireproofing materials, proposes to develop a sustainable alternative for current flexible foams which will comply with aircraft’ fire resistance requirements while meeting the comfort and durability expectations of end users."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering composites
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences polymer sciences polyurethane
- engineering and technology environmental engineering energy and fuels fossil energy petroleum
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
SP1-JTI-CS-2011-02
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
64230 Sauvagnon
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.