Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-05-30

FIre resistant BIObased polyurethane foam for aircraft SEATing cushions

Objective

"Flexible polyurethane (PU) foams are widely used in many industrial applications including automotive and aeronautics as fillers for seats, headrests etc. They are made from a reaction of two primary ingredients: an isocyanate and a polyol. Originally, these raw materials were derived from petrochemical feedstocks. The use of bio-polyols, i.e. derived from vegetable oils, as an alternative to standard polyols started around 2004 due to the rising costs of petroleum feedstocks and a growing concern for the environment.
But, these bio-polyols can only replace a portion of the polyol part in the formulation and they need to be blended with petroleum-based polyols to maintain the foam physical and mechanical properties. Face to a growing demand for products based on renewable resources, foam manufacturers need to increase that ratio in the formulations while delivering the same foam quality.
On top of that, foams used in the aircraft industry, for seat cushions for instance, need to pass highly stringent fire performance tests. It is well-known that the chemical nature of the polyurethane, its low density and the open cell structure cause this material to be highly flammable. In order to achieve high flame resistance requirements, polyurethane foams must be formulated with flame retardants. A multiplicity of flame retardants is known and commercially available for this purpose, like halogenated flame retardants. However, considerable toxicological reservations frequently stand in the way of their use and alternatives are expected.
In the FIBIOSEAT project, AXYAL, an innovative SME specialized in the industrial transformation of plastics and composites which owns a leading edge expertise in PU foaming and fireproofing materials, proposes to develop a sustainable alternative for current flexible foams which will comply with aircraft’ fire resistance requirements while meeting the comfort and durability expectations of end users."

Call for proposal

SP1-JTI-CS-2011-02
See other projects for this call

Coordinator

AXYAL S.A.S.
EU contribution
€ 100 806,25
Address
Aéropole Pyrénées - Rue du Bruscos
64230 Sauvagnon
France

See on map

Region
Nouvelle-Aquitaine Aquitaine Pyrénées-Atlantiques
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Jocelin Laborde (Mr.)
Links
Total cost
No data

Participants (1)