Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Balance Augmentation in Locomotion, through Anticipative, Natural and Cooperative control of Exoskeletons.

Project description

The goal of the BALANCE project is to realize an exoskeletal robot that improves the balance performance of humans, targeted at users facing balance-challenging conditions or suffering from a lack of ability to walk or maintain balance during walking. The proposed exoskeleton is human-cooperative in the sense that the control of the exoskeleton is complementary to the remaining human control. Depending on application it can either assist only in difficult conditions or in case of erroneous behaviour of the user, or can assist the user maximally. The ultimate goal is to have the exoskeleton seamlessly cooperate with the human. The exploitation of the results will focus on applications in neurorehabilitation and worker support.

The goal of this project is to realize an exoskeletal robot that improves the balance performance of humans, targeted at users facing balance-challenging conditions or suffering from a lack of ability to walk or maintain balance during walking. The proposed exoskeleton will know the difference between the onset of a fall and an intentional change of walking pattern, such as a turn, or a step/stair and only when necessary will it act to maintain postural balance. Available exoskeletons lack the ability to correct or assist postural balance and due to size, weight and controls; they often impede balance.The proposed exoskeleton is human-cooperative in the sense that the control of the exoskeleton is complementary to the remaining human control. Depending on application it can either assist only in difficult conditions or in case of erroneous behaviour of the user, or can assist the user maximally. Supported tasks are functional standing and walking, in a clinical, real-life or work environment, including specific actions like turning or stepping on or off an elevation.The basic concept is to understand how human postural control is structured, how and why it functions and is robust in healthy humans, and to use this knowledge to mimic and enhance the postural control through the exoskeleton in a minimally obtrusive manner. BALANCE will study and implement both anticipatory and reactive balancing mechanisms, and implement a 'sense of balance' and 'sense of human motion intentions' through sensor fusion techniques and data analysis. The ultimate goal is to have the exoskeleton seamlessly cooperate with the human, both for healthy and neurologically impaired subjects.A consortium of specialists in exoskeleton hardware development, human motor control, exoskeleton control, adaptive robot control, gait mechanics, biomechanical sensing and balance assessment technology has gathered in BALANCE to achieve these objectives. The exploitation of the results will focus on applications in neurorehabilitation and worker support.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-9
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

FUNDACION TECNALIA RESEARCH & INNOVATION
EU contribution
€ 679 734,00
Address
PARQUE CIENTIFICO Y TECNOLOGICO DE BIZKAIA, ASTONDO BIDEA, EDIFICIO 700
48160 DERIO BIZKAIA
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0