Objective
Carrier spin states in semiconductor nano-structures can be manipulated with fast optical pulses via the optical selection rules. The electron and hole spins in quantum dots interact strongly with the nuclear spins in the host material via the hyperfine interaction. This allows a new, versatile approach to nuclear spintronics, namely applying fast optical initialisation to carrier states and subsequent transfer via dynamic nuclear polarisation (DNP) of the spin information onto long-lived nuclear spin states, with promising applications in quantum information science and novel nuclear magnetic resonance (NMR) techniques.
This project aims to develop new, efficient optical pumping schemes to maximise DNP by going beyond the established Overhauser effects, investigating the possibility of self-polarization and phase transitions of the nuclear spin ensemble. An innovating aspect of this proposal is to use valence state engineering to tailor the highly anisotropic dipolar interaction between nuclei and holes, which can lead to novel, non-colinear hyperfine coupling.
The next innovation proposed is the development of an all-optical technique AONMR that does not require any radiofrequency (rf) coil set-up capable to control mesoscopic spin ensembles. Contrary to standard NMR techniques based on the generation of macroscopic rf-fields, AONMR can address the nuclear spins in one single nano-object via resonant laser excitation.
A further important target is to use quantum dots and other carrier localisation centres as efficient sources of DNP generation and to carry out a detailed study of the diffusion of DNP throughout the sample and finally across the sample surface, varying key sample (chemical composition, strain, substrate orientation) and experimental parameters such as temperature and applied external fields. These experiments are a feasibility study for using hyperpolarized compound semiconductors for increasing the sensitivity in Magnetic Resonance Imaging (MRI).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radio frequency
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111012
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
75794 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.