Objective
The overall goal of the project is to contribute to the consolidation of the nascent and revolutionary philosophy of “Materials by Design” by resorting to the enormous power provided by the nowadays-available computational techniques. Limitations of current procedures for developing material-based innovative technologies in engineering, are often made manifest; many times only a catalog, or a data basis, of materials is available and these new technologies have to adapt to them, in the same way that the users of ready-to-wear have to take from the shop the costume that fits them better, but not the one that fits them properly. This constitutes an enormous limitation for the intended goals and scope. Certainly, availability of materials specifically designed by goal-oriented methods could eradicate that limitation, but this purpose faces the bounds of experimental procedures of material design, commonly based on trial and error procedures.
Computational mechanics, with the emerging Computational Materials Design (CMD) research field, has much to offer in this respect. The increasing power of the new computer processors and, most importantly, development of new methods and strategies of computational simulation, opens new ways to face the problem. The project intends breaking through the barriers that presently hinder the development and application of computational materials design, by means of the synergic exploration and development of three supplementary families of methods: 1) computational multiscale material modeling (CMM) based on the bottom-up, one-way coupled, description of the material structure in different representative scales, 2) development of a new generation of high performance reduced-order-modeling techniques (HP-ROM), in order to bring down the associated computational costs to affordable levels, and 3) new computational strategies and methods for the optimal design of the material meso/micro structure arrangement and topology (MATO) .
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware computer processors
- natural sciences mathematics pure mathematics topology
- humanities philosophy, ethics and religion philosophy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
08034 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.