Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanoscale Enhanced Characterisation of SOlar selective coatings

Objective

Optical coatings are commonly deposited over large areas on different substrates: glass, metals (steel, aluminium...) or polymeric foils (PET...). Production processes involve normally large machinery including many times roll-to-roll processes to deposit multilayers over several square meters of substrates. However, properties of these coatings depend strongly on nanometric properties: composition, crystallography, nanostructure, roughness, homogeneity... Solar selective coatings are considered a special case of optical coatings combining several layers with different properties, mainly: antireflection, solar absorbance and infrared mirror.
Nowadays the most demanding solar selective coatings are those used in tubes of high temperature parabolic trough solar collectors. Coatings have to operate in an aggressive environment (temperatures above 400ºC, thermal cycling) during 20-25 years. Besides, further developments require higher temperatures, improved scratch resistance and working under oxidant atmospheres (small quantities of water vapour and oxygen). In order to get significant advances in this field it is essential to have:

1. Nanoscale structure related requirements (nanoroughness, nanohardness, crystallography, composition, vibrational modes) and the correlation with performance requirements: optical and, more important, life expectancy.
2. Standard characterisation and degradation protocols to serve as a powerful tool to coating developers, producers and end users for life prediction and to push the collector parameters (temperatures and environment) to higher efficiency parameters.

The main idea behind this NECSO project is to provide tools to the end users namely solar plants builders, to guarantee that the selective coating will work properly during 20 to 25 years. Novel experimental methods for testing materials under extreme conditions (temperature and radiation) are needed providing a deeper understanding of the interaction of electromagnetic radiation with nanomaterials, as basis for design of new spectrally selective absorber coatings. Nanoscale characterisation (roughness, AFM, nanoindentation, scratch-adhesion, crystallography by FESEM-EBSD, Raman, RX, XPS, etc) will correlate the nanostructure parameters with coating performance. The resulting outcomes are expected to contribute significantly to the infrastructure of the solar energy research, development and industrial activities worldwide. Additionally, the designed testing protocols should help coating developers to compare available layers and newly designed ones, with standard procedures. Finally, testing procedures will also be of utter importance to have a fast quality control on the coatings, typically in 4 meter tubes, over some tens of kilometres in a common cylinder parabolic solar plant.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2012-SME-6
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-TP - Collaborative Project targeted to a special group (such as SMEs)

Coordinator

FUNDACION TEKNIKER
EU contribution
€ 467 979,37
Address
CALLE INAKI GOENAGA 5
20600 Eibar Guipuzcoa
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0