Objective
The majority of the globe's population carries a mobile phone, but with the increasing proliferation of smart phones and tablet-computers the tele-traffic is predicted to grow 1000-fold over the next decade, especially, when aiming for creating the impression of ubiquitous and flawless 'tele-presence' based on crisp, three-dimensional (3D) video with its sense of joy and wonder. For tele-presence to become a reality requires a further quantum-leap from the popular 3G/4G smart phones and tablet-computers. This project will create the link-level enabling techniques of this transformational quantum leap to immersive Giga-bit 3D video communications, relying on Optical Wireless (OW) hotspots and their ad hoc networking.
As a result, the Beam-Me-Up project will contribute to job- and wealth-creation in numeorus ways, as exemplified by the often-quoted economic benefits of 3G/4G phones on businesses. From an environmental perspective, flawless tele-presence has the potential of eliminating millions of flights/trips and hence will considerably reduce CO2 emissions, whilst reducing the related business-costs as well as saving precious time for the work-force. However, the transfiguration of the voice-only phone into today's intelligent smart phone was facilitated by a 1000-fold transmission-rate increase, which would result in a proportionally increased power consumption, CO2 emissions and in a soaring energy-bill. Tele-presence based on crisp Avatar-style 3D video has even higher bitrates and energy consumption. These radically new high-rate 3D tele-presence services can no longer be accommodated in the severely congested Radio Frequency (RF) band.
Hence the project will create a suite of new OW system components, operating in the visible-light domain and will conceive low-power, low-complexity OW solutions to enable immersive Giga-bit 3D wireless video communications over heterogeneous networks.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradio frequency
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network4G
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsmobile phones
- social scienceseconomics and businessbusiness and managementemployment
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
SO17 1BJ Southampton
United Kingdom