Objective
Regularity and irregularity plays a central role in mathematics. In the present research proposal we will select problems from combinatorics and number theory (including additive combinatorics), where regularity and irregularity appear. In some cases we have to deal, e.g. with arbitrary finite or infinite subsets of natural numbers, where the only information we have is their cardinality, namely, that they are of positive (lower asymptotic) density within the set of all natural numbers or within the interval [1,N] for a large N. In other cases we consider an arbitrary distribution of n points within the unit square, where all we know is the density of our point set. The goal is often to show that certain configurations appear within the arbitrary set of numbers or points. These configurations definitely appear in a random set of numbers or points, but we have to show this for an arbitrary set of numbers or points with certain general properties. In order to reach our goal one can use two well-known methods. The first one is deterministic, often some kind of greedy algorithm. The second is the probabilistic method of Erdős, which shows that almost all arrangements of the given points or numbers (or graphs) fulfill the wanted property. A third method, the so called pseudorandom method, was initiated by the PI (together with M. Ajtai and J. Komlós), uses a combination of these. In other cases we have a deterministic set of numbers with certain quasi-random properties, for example, the primes. Randomness was the key idea in the recent breakthrough of Green and Tao, in proving that primes contain arbitrarily long arithmetic progressions. We will deal with 6 groups of problems: (i) finite or infinite sequences of integers, (ii) difference sets and Fourier analysis, (iii) graph and hypergraph embedding theorems, (iv) Ramsey theory, (v) distribution of points in the plane and in the unit square, (vi) regularities and irregularities in the distribution of primes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesmathematicspure mathematicsmathematical analysisfourier analysis
- natural sciencesmathematicspure mathematicsarithmetics
- natural sciencesmathematicspure mathematicsdiscrete mathematicsgraph theory
- natural sciencesmathematicspure mathematicsdiscrete mathematicscombinatorics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
1053 Budapest
Hungary