Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Chromosome self-clearing completes sister chromatid separation

Objective

In this research program, we propose the new concept that sister chromatid separation in mitosis is completed as a result of the dynamic intrinsic structural changes of chromosomes, i.e. through cycles of regional chromosome stretching and recoiling, which we call the self-clearing mechanism of chromosomes. By developing several novel methods, we will establish this new concept and demonstrate that the self-clearing of chromosomes is an essential mechanism allowing complete removal of sister chromatid cohesion, and that it is a fundamentally conserved function from yeast to vertebrates. To maintain genetic integrity, eukaryotic cells must duplicate their chromosomes and subsequently segregate them to opposite poles of the cell, prior to cell division. Cohesion is established between sister chromatids during S phase and marks sister pairs to ensure proper chromosome segregation in the next mitosis. However, the cohesion must be eventually removed to allow sister chromatids to separate and segregate to opposite poles. Although recent studies have revealed how the removal of cohesion is initiated, it is still elusive how this removal is completed. Our project will address mechanisms promoting this process and will open up a new direction of research, regarding dynamic chromosome organization, in particular its compaction and condensation. At present, the structural basis for chromosome compaction and condensation is poorly understood. Our project will shed new light on this inscrutable scientific problem by revealing the process of chromosome self-clearing. The outcome of our research will give important clues to fundamental mechanisms for chromosome segregation and will contribute to our understanding of human diseases, such as cancer and congenital disorders, which are characterized by chromosome instability and aneuploidy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITY OF DUNDEE
EU contribution
€ 2 304 081,60
Address
Nethergate
DD1 4HN Dundee
United Kingdom

See on map

Region
Scotland Eastern Scotland Angus and Dundee City
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0